

TONiC™ UHV Messsystem

Das TONiC UHV System bietet alle Vorteile der bewährten TONiC Weg- und Winkelmesssysteme in einem Lesekopf, der unter Verwendung von UHV-tauglichen Materialien und Prozessen konzipiert und gefertigt wurde.

Der TONIC UHV Lesekopf ist kompatibel mit verschiedensten Maßverkörperungen für die Weg- und Winkelmessung mit bidirektionalen, optischen *IN-TRAC*™ Referenzmarken.

Optimale Zuverlässigkeit und hohe Unempfindlichkeit gegenüber optischer Degradation erzielt das TONiC System durch Renishaws bewährte Filteroptiken, welche ein noch geringeres Rauschen erzeugen sowie durch dynamische Signalverarbeitung, Auto Gain Control (AGC) und Auto Offset Control (AOC). Das Ergebnis ist eine gleichmäßigere Geschwindigkeitsregelung, die wiederum zu einer besseren Regelgüte und Positionsstabilität führt – grundlegende Voraussetzungen für viele Anwendungen.

TONiC UHV Abtastköpfe verfügen weiterhin über ein analoges oder digitales Interface in Form eines robusten und abnehmbaren SUB-D Steckverbinders, der in einem Abstand von bis zu zehn Metern vom Lesekopf angebracht werden kann. Das Interface kann eine hochgenaue digitale Interpolation mit einer Auflösung von bis zu 1 nm erzielen.

Der Lesekopf ist mit einer eingebauten Einstell-LED ausgestattet, die für eine schnelle und einfache Installation sorgt. Alle Abtastköpfe werden standardmäßig mit einem RFI-abgeschirmten, UHV-tauglichen Kabel geliefert.

- Saubere RGA
- Niedrige Ausgasraten
- Hohe Ausbacktemperatur von 120 °C
- Abtastköpfe mit niedrigem Stromverbrauch
- Berührungsloses, offenes optisches System
- Abnehmbarer Steckverbinder mit integrierter hochgenauer Interpolation bis zu einer Auflösung von 1 nm (0,00075 Winkelsekunden) oder 1 Vss Analogsignal
- Auflösungen bis 1 nm
- Dynamische Signalverarbeitung für höchste zyklische Genauigkeit, SDE besser als ±30 nm
- Auto Gain Control (AGC) gewährleistet konstante Signalstärke und langfristige Zuverlässigkeit
- Kompatibel mit verschiedensten linearen und rotativen Maßverkörperungen mit optisch integrierter, vom Anwender wählbarer IN-TRAC Referenzmarke (Bezugspunkt)

Kompatible Maßverkörperungen

Lineare Maßverkörperungen

	RTLC20-S	RTLC20/FASTRACK™	RKLC20-S	
	Selbstklebend installiertes Edelstahlmaßband	Edelstahlmaßband und selbstklebendes Trägersystem	Selbstklebend installiertes Edelstahlmaßband	
Form (H × B)	0,4 mm × 8 mm, einschließlich Klebeband	RTLC20 Maßband: 0,2 mm × 8 mm <i>FASTRACK</i> Trägersystem: 0,4 mm × 18 mm, einschließlich Klebeband	0,15 mm × 6 mm, einschließlich Klebeband	
Genauigkeit (einschließlich Steigung und Linearität)	±5 μm/m	±5 μm/m	±5 μm/m	
Linearität (Werte erreichbar nach 2-Punkt Fehlerkompensation)	±2,5 μm/m	±2,5 μm/m	±2,5 μm/m	
Maximale Länge	10 m* (> 10 m auf Anfrage erhältlich)	10 m (> 10 m auf Anfrage erhältlich)	20 m (> 20 m auf Anfrage erhältlich)	
Thermischer Ausdehnungskoeffizient (bei 20 °C)	10,1 ±0,2 μm/m/°C	10,1 ±0,2 μm/m/°C	Entspricht dem Installationsuntergrund, wenn Maßbandenden mit Endklemmen fixiert sind [†]	

	RSLM20	RELM20
	Selbstklebend oder mit Klammer/Klemmen installierter Edelstahlmaßstab	Selbstklebend oder mit Klammer/Klemmen installierter ZeroMet [™] Maßstab mit minimaler thermischer Ausdehnung
Form (H × B)	1,5 mm × 14,9 mm	1,6 mm × 14,9 mm
Genauigkeit (einschließlich Steigung und Linearität)	±4 μm (Gesamtgenauigkeit über die komplette Länge von 5 m)	±1 (Gesamtgenauigkeit bis zu 1 m)
Linearität (Werte erreichbar nach 2-Punkt Fehlerkompensation)	n.v.	n.v.
Maximale Länge	5 m	1,5 m
Thermischer Ausdehnungskoeffizient (bei 20 °C)	10,1 ±0,2 μm/m/°C	0,75 ±0,35 μm/m/°C

Weitere Informationen zu den Maßverkörperungen entnehmen Sie bitte dem jeweiligen Datenblatt, das unter www.renishaw.de/tonicdownloads heruntergeladen werden kann.

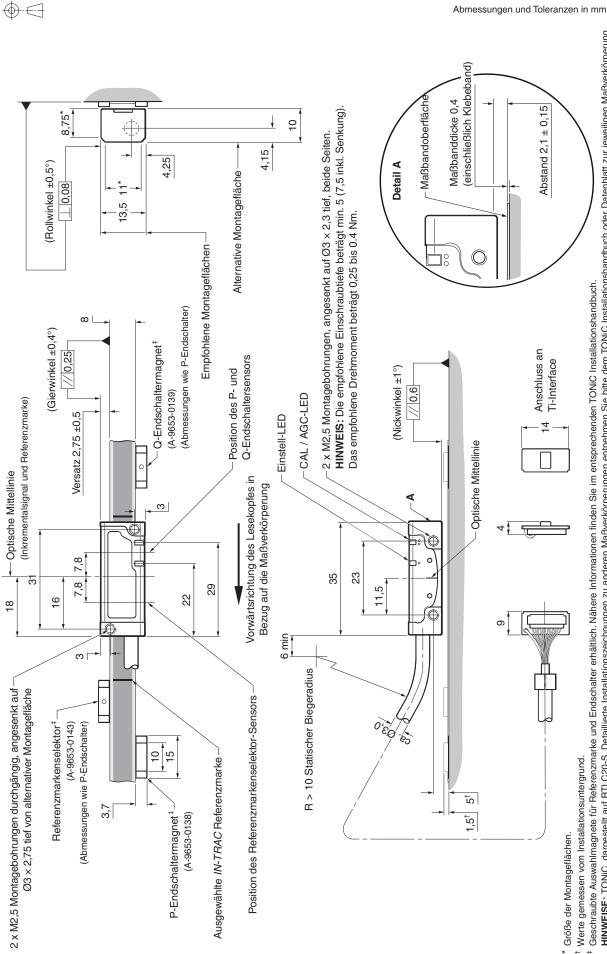
 $^{^{\}star}$ Für RTLC20-S Achsenlängen > 2 m wird FASTRACK mit RTLC20 empfohlen.

 $^{^\}dagger$ Die korrekte thermische Fixierung der Maßverkörperung nach Ausbackung des Systems wird nicht garantiert.

Kompatible Maßverkörperungen (Forsetzung)

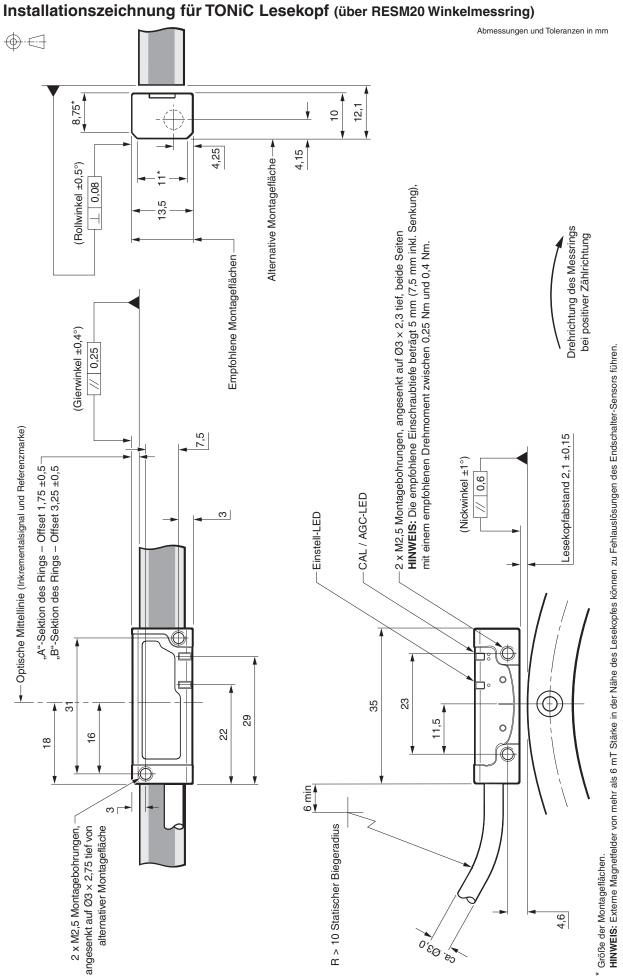
Rotative Maßverkörperungen

	RESM20	REXM20
	Edelstahlring	Hochgenauer Edelstahlring
Genauigkeit	±1,9 Winkelsekunden (Typisch installierte Genauigkeit für einen RESA30 Ring mit 550 mm Durchmesser)*	±1 Winkelsekunde [†] (Installierte Gesamtgenauigkeit für 417 mm Durchmesser REXM20 Ring)
Ringdurchmesser	52 mm bis 550 mm	52 mm bis 417 mm
Thermischer Ausdehnungskoeffizient (bei 20 °C)	15,5 ±0,5 μm/m/°C	15,5 ±0,5 μm/m/°C


 $[\]hbox{\it *} \ Typische \ Installationen \ ergeben \ sich \ aus \ der \ Kombination \ von \ Teilungs- \ und \ Installationsfehlern.$

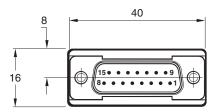
[†] Bei Verwendung von zwei Abtastköpfen und einem zusätzlichen DSi (Dual Signal) Interface.

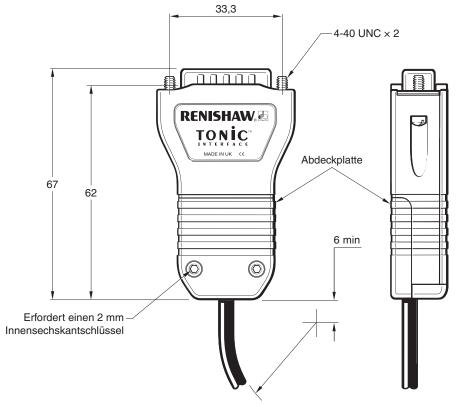
4


Installationszeichnung für TONiC Lesekopf (über RTLC20-S Maßband)

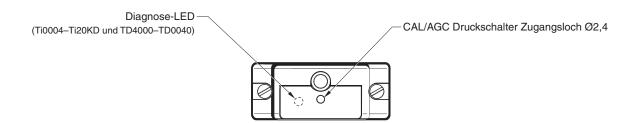
Geschraubte Auswahlmagnete für Referenzmarke und Endschalter erhältlich. Nähere Informationen finden Sie im entsprechenden TONiC Installationshandbuch.

HINWEISE: TONIC, dargestellt auf RTLC20-S. Detaillierte Installationszeichnungen zu anderen Maßverkörperungen entnehmen Sie bitte dem TONIC Installationshandbuch oder Datenblatt zur jeweiligen Maßverkörperung Externe Magnetfelder von mehr als 6 mT Stärke in der Nähe des Lesekopfes können zu Fehlauslösungen der Endschalter- und Referenzsensoren führen.





Zeichnung der Abmessungen des Ti/TD Interface


Abmessungen und Toleranzen in mm

R > 10 Statischer Biegeradius

TD Interface für 2 verschiedene Auflösungen

Ermöglicht das Umschalten zwischen 2 Auflösungen. Siehe TD Interface Artikelnummer für verfügbare Auflösungen.

HINWEISE:

- Es wird empfohlen das das Signal nur bei stillstehender Achse umgeschaltet wird.
- Keine Endschalterausgänge.

Allgemeine Spezifikationen

Spannungsversorgung	5V ±10%	Nur Lesekopf < 100 mA
		T16xx/T26xx mit Ti0000 < 100 mA
		T16xx/T26xx mit Ti0004 - Ti20KD oder TD4000 - TD0040 < 200 mA
		HINWEIS: Die Stromaufnahme bezieht sich auf Systeme ohne Abschlusswiderstand.
		Bei digitalen Ausgängen steigt die Stromaufnahme bei einem Abschlusswiderstand von 120 Ohm um weitere 25 mA pro Kanalpaar (z. B. A+, A-).
		Bei analogen Ausgängen steigt die Stromaufnahme bei einem Abschlusswiderstand von 120 Ohm um insgesamt weitere 20 mA.
		5 V DC Spannungsquelle entsprechend den Bestimmungen IEC 60950-1 für SELV-Stromkreise.
	Restwelligkeit	200 mVss max. bei Frequenzen bis max. 500 kHz
Temperaturbereich (System)	Lagerung	−20 °C bis +70 °C
	Betrieb	0 °C bis +70 °C
(Lesekopf)	Ausbacken	120 °C
Luftfeuchtigkeit (System)		95% relative Luftfeuchtigkeit (nicht kondensierend) nach IEC 60068-2-78
Schutzart (Lesekopf)		IP20
(Interface)		IP20
Beschleunigung (Lesekopf)	Betrieb	500 m/s², 3 Achsen
Schock (System)	Betrieb	500 m/s², 11 ms, ½ Sinus, 3 Achsen
Vibration (System)	Betrieb	100 m/s² max. bei 55 Hz bis 2000 Hz, 3 Achsen
Masse	Lesekopf	10 g
	Interface	100 g
	Kabel	14 g/m
EMV Konformität (System)		IEC 61326-1
Lesekopfkabel		Einzelne Abschirmung mit verzinntem Kupfergeflecht. FEP isolierte Adern
Typischer zyklischer Fehler (SDE)	±30 nm

Geschwindigkeit

Zählerfrequenz	Maximale Geschwindigkeit (m/s)										
getakteter Ausgang (MHz)	Ti0004 5 μm	Ti0020 1 µm	Ti0040 0,5 μm	Ti0100 0,2 μm	Ti0200 0,1 μm	Ti0400 50 nm	Ti1000 20 nm	Ti2000 10 nm	Ti4000 5 nm	Ti10KD 2 nm	Ti20KD 1 nm
50	10	10	10	6,48	3,240	1,625	0,648	0,324	0,162	0,065	0,032
40	10	10	10	5,40	2,700	1,350	0,540	0,270	0,135	0,054	0,027
25	10	10	8,10	3,24	1,620	0,810	0,324	0,162	0,081	0,032	0,016
20	10	10	6,75	2,70	1,350	0,670	0,270	0,135	0,068	0,027	0,013
12	10	9	4,50	1,80	0,900	0,450	0,180	0,090	0,045	0,018	0,009
10	10	8,10	4,00	1,62	0,810	0,400	0,162	0,081	0,041	0,016	0,0081
8	10	6,48	3,24	1,29	0,648	0,324	0,130	0,065	0,032	0,013	0,0065
6	10	4,50	2,25	0,90	0,450	0,225	0,090	0,045	0,023	0,009	0,0045
4	10	3,37	1,68	0,67	0,338	0,169	0,068	0,034	0,017	0,0068	0,0034
1	4,2	0,84	0,42	0,16	0,084	0,042	0,017	0,008	0,004	0,0017	0,0008
Analogausgang		10 (–3 dB)									

HINWEIS: TD Interface haben oben genannte maximale Verfahrgeschwindigkeiten, je nach Auflösung

Drehzahl abhängig vom Ringdurchmesser – Umrechnung nach:

Drehzahl (min-1) =
$$\frac{V \times 1000 \times 60}{\pi D}$$

Mit V = maximale lineare Geschwindigkeit (m/s)

und D = Außendurchmesser RESM20 oder REXM20 Ring (mm)

Ausgangssignale

Digitalausgänge

			Interface		
			Ti0004 – Ti20KD	TD4000 - TD0040	
Funktion	Sig	ınal	Pin	Pin	
Channingevereeraung	5 V		7, 8	7, 8	
Spannungsversorgung	0	V	2, 9	2, 9	
	Α	+	14	14	
Inkrementell	^	_	6	6	
iliki elilelileli	В	+	13	13	
	Ь	_	5	5	
Referenzmarke	Z	+	12	12	
Helefelizillarke		-	4	4	
Endschalter	P*		11	-	
Lituscilaitei	Q		10	-	
Einstellung	Χ		1	1	
Alarm [†]	F	+	-	11	
Alumi		-	3	3	
Umschalten Auflösung [‡]	-		-	10	
Schirmwiderstand	Innen		-	-	
Schilliwiderstand	Außen		Gehäuse	Gehäuse	

Analoge Ausgänge

				Lesekopf T16xx/26xx	Interface Ti0000	
Funkti	Signal		Farbe	Pin		
Spannungsversorgung		5 V		Braun	4, 5	
Spainfullysve	isorgung	0 V		Weiß	12, 13	
	Cosinus	V	+	Rot	9	
Inkrementell	Cosilius	V ₁	_	Blau	1	
ilikrementen	Sinus	V	+	Gelb	10	
		V ₂	_	Grün	2	
Referenzmarke		V	+	Violett	3	
		V _o	_	Grau	11	
Endschalter		$V_{_{\rm P}}$		Pink	7	
		$V_{_{ m q}}$		Schwarz	8	
Einstellung		V_{x}		Durchsichtig	6	
Kalibrierung		CAL		Orange	14	
Schirmwiderstand		-		Schirm	Gehäuse	

15-pol. SUB-D Stecker

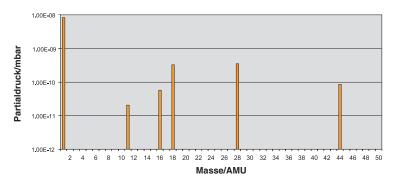
^{*} Wird zu Alarm (E+) bei Ti Optionen E, F, G oder H.

[†] Das Alarmsignal kann als Leitungstreibersignal oder als Tri-State Signal ausgegeben werden. Geben Sie bei der Bestellung bitte die gewünschte Option an.

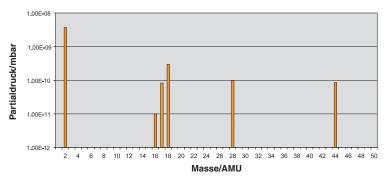
[‡] Bei TD Interfaces muss der PIN 10 mit 0 V verbunden werden, um die geringere Auflösung zu erzielen.

RGA-Ergebnisse

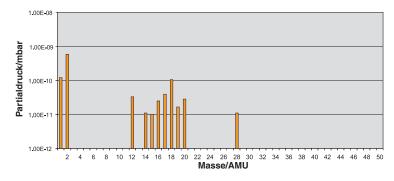
Testaufbau


Ein auf einen Scanbereich von 200 AMU eingestelltes Quadrupol-Massenspektrometer (AccuQuad 200 RGA), wurde verwendet, um RGA- (Restgasanalyse) Daten zu erfassen und den Gesamtkammerdruck zu messen.

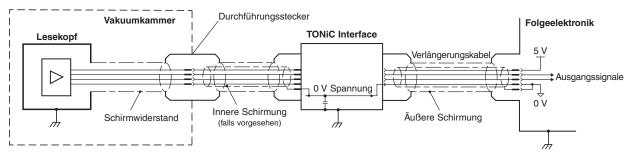
Nach der anfänglichen Voreinstellung des Systems wurde ein Hintergrundspektrum zusammen mit dem Gesamtdruck in der Testkammer aufgezeichnet.


Die Komponente wurde in die Vakuumkammer (0,015 m³) gesetzt und das System wurde dann mithilfe einer Dioden-/ Ionenpumpe des Typs KJL Lion 802 (800/s) und einer Membranpumpe des Typs Divac bei Raumtemperatur 24 Stunden lang ausgepumpt, woraufhin erneut eine Hintergrundabtastung durchgeführt und der Gesamtdruck in der Testkammer aufgezeichnet wurde. War der Systemdruck besser als 5 × 10⁻⁹ mbar, wurde das Testexemplar bei 120 °C 48 Stunden lang gebacken. Anschließend wurde gewartet, bis das System auf Raumtemperatur heruntergekühlt war, bevor ein letztes Massenspektrum und der Gesamtdruck in der Kammer aufgezeichnet wurden. Diese abschließenden RGA-Aufzeichnungen sind nachfolgend dargestellt.

HINWEIS: Eine exakte Wiederholung dieser Ergebnisse ist unwahrscheinlich, da die RGA-Daten von vielen Faktoren, einschließlich den Umgebungsfaktoren und den Ausgangsbedingungen in der Kammer, abhängen. Diese Daten sind jedoch repräsentativ für die Funktion im Vakuum.


TONiC Lesekopf mit 1,0 m Kabel nach Ausbackung (Gesamtdruck = 9,0 × 10⁻¹⁰ mbar)

RSLM20 Maßstab (180 mm Länge) mit 2 Klammern und 1 Klemme nach Ausbackung (Gesamtdruck = 3,0 × 10⁻¹⁰ mbar)


RESM20 (Ø115 mm) nach Ausbackung (Gesamtdruck = 7.76×10^{-10} mbar)

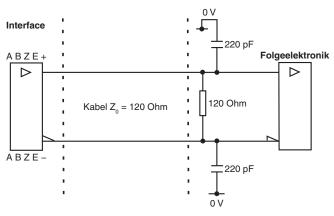
Elektrische Anschlüsse

Erdung und Schirmung

WICHTIG: Der äußere Schirm sollte mit der Maschinenerde (Feldmasse) verbunden werden. Der innere Schirm sollte nur an der Folgeelektronik mit dem 0-V-Anschluss verbunden werden. Es ist darauf zu achten, dass der innere und äußere Schirm voneinander isoliert sind. Falls der innere und der äußere Schirm miteinander verbunden sind, führt dies zu einem Kurzschluss zwischen 0 V und der Erde, was elektrisches Rauschen bewirken kann.

Max. Kabellänge

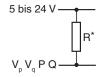
Lesekopf bis Interface: 10 m

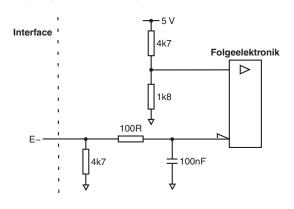

Interface bis Zählkarte: Abhängig von der Zählerfrequenz des

getakteten Ausgangs. Siehe Tabelle unten.

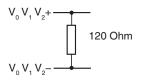
Zählerfrequenz des Empfängers (MHz)	Max. Kabellänge (m)
40 bis 50	25
< 40	50
Analog	50

Empfohlene Signalabschlüsse


Digitalausgänge


Standard RS422A Leitungsempfänger-Schaltung Zusätzliche Kondensatoren reduzieren eventuelles Signalrauschen

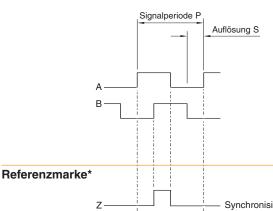
Ausgang Endschalter


(nur TI Interface)

Signalabschluss Alarmsignal (single-ended) (Ti Optionen A, B, C, D)

Analoge Ausgänge

^{*} Wählen Sie R (Ohm) so groß, dass 20 mA nicht überschritten werden. Alternativ ein Relais oder einen Optokoppler verwenden.

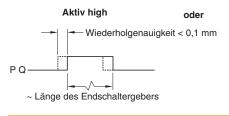

Ausgangsspezifikationen

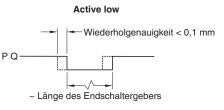
Digitale Ausgangssignale

Interface-Modelle Ti0004 - Ti20KD und TD4000 - TD0040

Signalform - Rechtecksignal, Differenzial-Leitungstreiber EIA RS422A (außer Endschalter P und Q)

Inkremental* 2 Kanäle A und B für Vierfachauswertung (90° phasenverschoben)


Modell (µm) (µm) Ti0004 20 5 Ti0020 4 1 Ti0040 2 0,5 Ti0100 8,0 0.2 Ti0200 0.4 0,1 Ti0400 0,2 0,05 Ti1000 0,08 0,02 Ti2000 0,04 0,01 Ti4000 0,02 0,005 Ti10KD 0.008 0.002 Ti20KD 0,001


Synchronisierter Puls Z, Pulslänge entsprechend der Auflösung.
Bidirektional wiederholgenau[†]

Synchronisierter Puls Z, Pulslänge entsprechend der Signaldauer

HINWEISE: Wählen Sie bei der Bestellung je nach der verwendeten Steuerung die Referenz "Standard" oder "breit" aus. Breite Referenzmarke nicht bei Ti0004 verfügbar.

Endschalter Ausgang offener Kollektor, asynchroner Puls **Nur digitales Ti Interface**

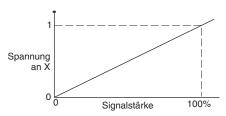
HINWEIS: TD Interface haben keine Endschalter. P Endschalter wird zu E+ bei Ti Optionen E, F, G und H.

Alarm*

Leitungstreiber (Asynchroner Puls)

Alarmtrigger, wenn:

- Signalamplitude < 20% oder > 135%
- Lesekopf-Geschwindigkeit für einen zuverlässigen Betrieb zu hoch


Bidirektional wiederholgenau[†]

Invertiertes Signal E+ nur bei Ti Optionen E, F, G und H verfügbar.

oder Tri-State Alarm

Differenziell übertragene Signale haben einen offenen Kollektor für > 15 ms, wenn ein Alarmzustand vorliegt.

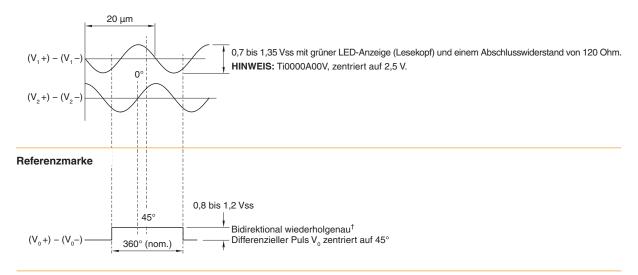
Einstellung[‡]

Signalspannung proportional zur Signalamplitude

 $^{^{\}star}$ Invertierte Signale sind aus Übersichtsgründen nicht dargestellt.

[†] Nur eine kalibrierte Referenzmarke ist bidirektional wiederholgenau.

[‡] Das dargestellte Einstellsignal ist während Kalibrierroutine nicht verfügbar.



Ausgangsspezifikationen (Fortsetzung)

Analoge Ausgangssignale

Interface Ti0000 und direktes Ausgangssignal von allen Abtastköpfen

Inkremental 2 Kanäle V1 und V2 differenzielle Sinussignale, zentriert auf ~1,65 V (90° phasenverschoben)

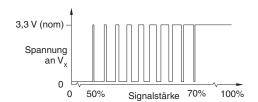
Endschalter Ausgang offener Kollektor, asynchroner Puls

Nur Interface Ti0000

- Wiederholgenauigkeit < 0,1 mm

~ Länge des Endschaltergebers

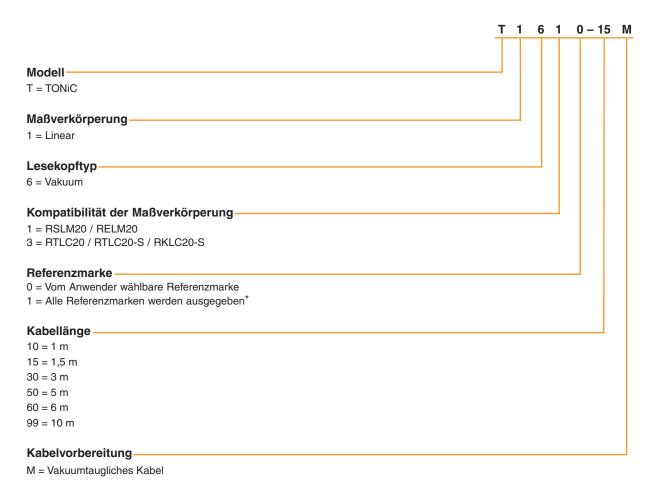
Direkt aus dem Lesekopf


HINWEIS: Das Interface Ti0000 enthält einen Transistor zur Umwandlung des Signals "active low" des Lesekopfes, um eine "active high" Ausgabe zu generieren.

Betrieb mit Fernkalibrierung (nur analoge Ausführungen)

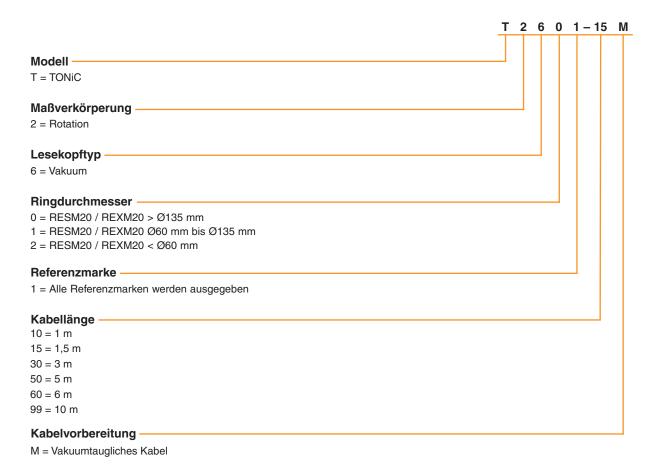
Alle Ti und TD Interfaces verfügen über einen Druckschalter zur Aktivierung der Funktionen CAL/AGC. Der Fernbetrieb von CAL/AGC wird über PIN 14 des analogen Ti0000-Interface ermöglicht. Bei Anwendungen, für die kein Interface benutzt wird, ist der Fernbetrieb von CAL/AGC unbedingt erforderlich.

Einstellung*


Bei einer Signalstärke zwischen 50% und 70% ist V_x ein Rechtecksignal. Je höher die Signalstärke, desto länger sind die inkrementellen High-Pegel. Bei einer Signalstärke > 70% beträgt V_x durchgehend 3,3 V.

^{*} Das dargestellte Einstellsignal ist während Kalibrierroutine nicht verfügbar.

 $^{^{\}dagger}$ Nur eine kalibrierte Referenzmarke ist bidirektional wiederholgenau.


Artikelnummern für Abtastköpfe über linearen Maßverkörperungen

 $^{^{\}star}$ Nur eine kalibrierte Referenzmarke ist bidirektional wiederholgenau.

Artikelnummern für Abtastköpfe über rotativen Maßverkörperungen

Für Anwendungen mit Teilrotation wenden Sie sich bitte an Ihre Renishaw Niederlassung.

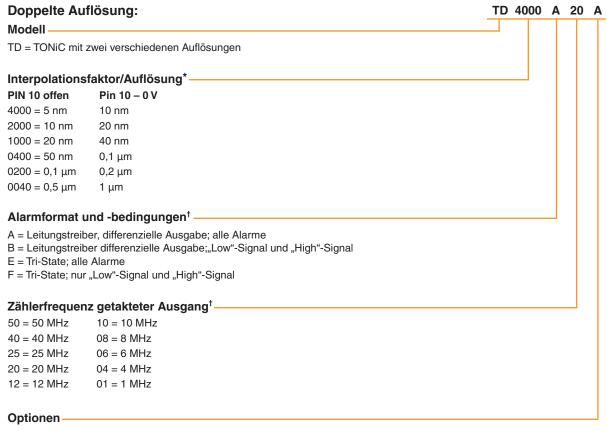
Artikelnummern für das Ti-Interface

Kompatibel mit allen TONiC Abtastköpfen

Ti 0000 A 00 A Analog: Optionen A = Richtungskennende Endschalter "active high" V = 2,5 V Mittenspannung Endschalter Ti 0200 A 20 A Digital: Modell Ti = TONiC Interface Interpolationsfaktor/Auflösung*- $0004 = 5 \mu m$ 1000 = 20 nm2000 = 10 nm $0020 = 1 \mu m$ $0040 = 0.5 \, \mu m$ $4000 = 5 \, nm$ $0100 = 0.2 \,\mu\text{m}$ $10\text{KD} = 2 \,\text{nm}$ $0200 = 0.1 \mu m$ 20KD = 1 nm0400 = 50 nmAlarmformat und -bedingungen[†] A = Leitungstreiber E-Ausgabe; alle Alarme B = Leitungstreiber E-Ausgabe, nur "Low"-Signal und "High"-Signal E = Tri-State; alle Alarme F = Tri-State; nur "Low"-Signal und "High"-Signal Alarme Zählerfrequenz getakteter Ausgang[†] – 50 = 50 MHz10 = 10 MHz40 = 40 MHz08 = 8 MHz06 = 6 MHz25 = 25 MHz20 = 20 MHz04 = 4 MHz12 = 12 MHz 01 = 1 MHzOptionen A = P/Q-Endschalter - "active high", Standard-Referenzmarke B = P/Q-Endschalter - "active low", Standard-Referenzmarke C = P/Q-Endschalter: - "active high", breite Referenzmarke[‡] D = P/Q Endschalter - "active low", breite Referenzmarke[‡] E = nur Q-Endschalter - "active high", differenzieller Alarm, Standard-Referenzmarke F = nur Q-Endschalter - "active low", differenzieller Alarm, Standard-Referenzmarke G = nur Q-Endschalter - "active high", differenzieller Alarm, breite Referenzmarke[‡] H = nur Q-Endschalter - "active low", differenzieller Alarm, breite Referenzmarke[‡]

HINWEIS: Nur der Lesekopf ist UHV-tauglich, das Ti Interface muss außerhalb der Vakuumkammer installiert werden.

^{*} Weitere Interpolationsfaktoren erhältlich. Für weitere Informationen wenden Sie sich bitte an Ihre Renishaw-Niederlassung.


[†] Bei Verwendung mit einem DSi sollte das Interface mit Leitungstreiber-Alarmsignalen und einer Zählerfrequenz des getakteten Ausgangs von 01, 04, 06, 08, 10, 12 oder 20 konfiguriert werden.

[‡] Breite Referenzmarke bei Interface Ti0004 (5 μm) nicht verfügbar.

Artikelnummern für das TD-Interface

Kompatibel mit allen TONiC Abtastköpfen

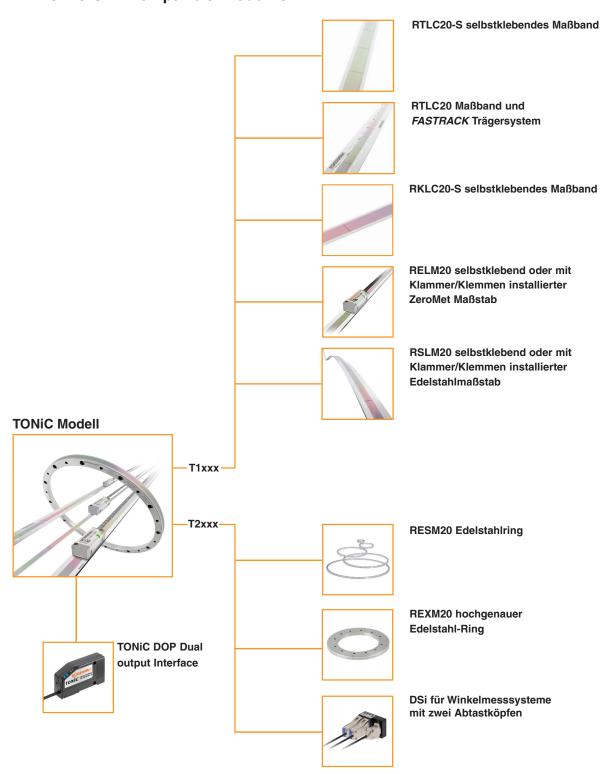
A = Standard-Referenzmarke

HINWEIS: Nur der Lesekopf ist UHV-tauglich, das TD Interface muss außerhalb der Vakuumkammer installiert werden.

B = Breite Referenzmarke

^{*} Für weitere Interpolationsfaktoren wenden Sie sich bitte an Ihre Renishaw-Niederlassung.

[†] Verwendung mit einem DSi sollte das Interface mit Leitungstreiber-Alarmsignalen und einer Zählerfrequenz des getakteten Ausgangs von 01, 04, 06, 08, 10, 12 oder 20 konfiguriert werden.


Karl-Benz-Straße 12 72124 Pliezhausen Deutschland

T +49 (0) 7127 9810 F +49 (0) 7127 88237 E germany@renishaw.com

www.renishaw.de

Mit TONiC UHV kompatible Produkte

Kontaktinformationen finden Sie unter www.renishaw.de/renishaw-weltweit

RENISHAW IST UM DIE RICHTIGKEIT UND AKTUALITÄT DIESES DOKUMENTS BEMÜHT, ÜBERNIMMT JEDOCH KEINERLEI ZUSICHERUNG BEZÜGLICH DES INHALTS. EINE HAFTUNG ODER GARANTIE FÜR DIE AKTUALITÄT, RICHTIGKEIT UND VOLLSTÄNDIGKEIT DER ZUR VERFÜGUNG GESTELLTEN INFORMATIONEN IST FOLGLICH AUSGESCHLOSSEN.

© 2010-2022 Renishaw plc. Alle Rechte vorbehalten.

© 2010-2022 Henishaw pic. Alle Hechte vorbehalten.
Renishaw behält sich das Recht vor, technische Änderungen ohne Vorankündigung vorzunehmen.
RENISHAW und das Messtaster-Symbol, wie sie im RENISHAW-Logo verwendet werden, sind eingetragene Marken von Renishaw plc im Vereinigten Königreich und anderen Ländern. apply innovation sowie Namen und Produktbezeichnungen von anderen Renishaw-Produkten sind Schutzmarken von Renishaw plc und deren Niederlassungen.
Alle anderen Handelsnamen und Produkthamen, die in diesem Dokument verwendet werden, sind Handelsnamen, Schutzmarken, oder registrierte Schutzmarken, bzw. eingetragene Marken ihrer jeweiligen Eigentümer.

Artikel-Nr.: L-9517-9427-03-E Veröffentlicht: 12.2022